APPENDIX K
Wallpaper Variations
- xnew = f(x,y) + cos(xs) - sin(ys)
- ynew = g(x,y) - cos(xs) - sin(ys)
Example Wallpaper with Pseudocode
The example shown here is the same as the Appendix D example.
Example Wallpaper
The example shown here is the same as the Appendix D example.
for (int i = 0; i ≤ 800; i++)
{
for (int j = 0; j ≤ 800; j++)
{
x = 0.0;
y = 0.0;
xs = -4.0 + i / 100.0;
ys = -4.0 + j / 100.0;
k = 0;
do
{
k++;
xnew = x*y*y+cos(xs)-sin(ys);
ynew = -y*x*x-cos(xs)-sin(ys);
x = xnew;
y = ynew;
} while (x*x+y*y ≤ 16.0 && k ≤ kmax);
PlotPixel(i, j, color);
}
}
| Tile | Build: (f(x, y), g(x, y)) | Escape: h(x, y) > value |
|---|---|---|
| Example | (x * y * y + cos(xs) - sin(ys), -x * x * y - cos(xs) - sin(ys)) | x² + y² > 16.0 |
| Wallpaper #1 | (-x * x * y + cos(xs) - sin(ys), y * x * x - cos(xs) - sin(ys)) | x*x + |y| > 16.0 / k |
| Wallpaper #2 | (x * y + cos(xs) - sin(ys), x * y - cos(xs) - sin(ys)) | x² + y² > 16.0/k |
| Wallpaper #3 | (x + cos(x * x * y - x) + cos(xs) - sin(ys), y + sin(x * y) - cos(xs) - sin(ys)) | x² + y² > 16.0 |
| Wallpaper #4 | (-x * y * y + cos(xs) - sin(ys), -y * x * x - cos(xs) - sin(ys)} | |x| + |y| > 16.0 / k |
| Wallpaper #5 | (x * y * y -x + cos(xs) - sin(ys), y * x * x - cos(xs) - sin(ys)) | |x| + |y| > 16.0 / k |
| Wallpaper #6 | (-x * x * y + cos(xs) - sin(ys), ynew = y * x - cos(xs) - sin(ys)) | |x| + |y| > 16.0 / k |
| Wallpaper #7 | (x * x * x * x - x * y * y * y + cos(xs) - sin(ys), -y * y * y * y - x * x * x * y - cos(xs) - sin(ys)) | x² + y² > 16.0 |
| Wallpaper #8 | (y * x * x - x * y * y + cos(xs) - sin(ys), -y * y * y - x * x * x * y - cos(xs) - sin(ys)) | x² + y² > 16.0 |
| Wallpaper #9 | (x * y * y + cos(xs) - sin(ys), y * x * x - cos(xs) - sin(ys)) | x*x*y + y > 16.0 |
| Wallpaper #10 | (x * y * y + cos(xs) - sin(ys), y * x * x - cos(xs) - sin(ys)) | |x| > 16.0 / k |
| Wallpaper #11 | (-x * y * y + cos(xs) - sin(ys), y * x - cos(xs) - sin(ys)) | |x| > 4.0 / k |
| Wallpaper #12 | (-x * x * y +x + cos(xs) - sin(ys), y * x - cos(xs) - sin(ys)) | |x| > 4.0 / k |
FRACTAL FIND