CHAPTER 5
Fractal Feigenbaum Variations
Fractal Feigenbaum sets are built with Julia set structure.
Feigenbaum computation may be shown as xk+1 = a * xk * (1.0 - xk)
If the Feigenbaum computation is treated as part of the Julia xk+1 calculation and yk+1 = yk,
then a Feigenbaum figure is generated when the count, k, exceeds an arbritrary maximum value, kmax.
for (int i = 0; i ≤ 500; i++)
{
for (int j = 0; j ≤ 500; j++)
{
xs = 0.0;
ys = 0.0;
x = -2.5 + (i / 100.0);
y = -2.5 + (j / 100.0);
k = 0;
do
{
k = k + 1;
xnew = y - x * (1.0 - x) + xs;
ynew = y + ys;
x = xnew;
y = ynew;
} while ((k ≤ 255) && (x * x + y * y ≤ 6.25));
PlotPixel(i, j, color);
PlotPoint(x*scale, y*scale, color);
if (k > 255) PlotPixel(i, j, color);
if (k > 255) PlotPoint(x*scale, y*scale, color);
}
}
See Appendix J for additional Feigenbaum figures.
FRACTAL FIND